
����������
�������

Citation: Brard, R.; Bellanger, L.;

Chevreuil, L.; Doistau, F.; Drouin, P.;

Stamm, A. A Novel Walking Activity

Recognition Model for Rotation Time

Series Collected by a Wearable Sensor

in a Free-Living Environment.

Sensors 2022, 22, 3555. https://

doi.org/10.3390/s22093555

Academic Editors: Claudine Lamoth

and Kim van Schooten

Received: 18 March 2022

Accepted: 5 May 2022

Published: 7 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Walking Activity Recognition Model for Rotation
Time Series Collected by a Wearable Sensor in a
Free-Living Environment
Raphaël Brard 1,2, Lise Bellanger 1 , Laurent Chevreuil 2, Fanny Doistau 2, Pierre Drouin 1,2

and Aymeric Stamm 1,*

1 Department of Mathematics Jean Leray, UMR CNRS 6629, Nantes University, 44322 Nantes, France;
rbrard@umanit.fr (R.B.); lise.bellanger@univ-nantes.fr (L.B.); pdrouin@umanit.fr (P.D.)

2 UmanIT, 13 Place Sophie Trébuchet, 44000 Nantes, France; lchevreuil@umanit.fr (L.C.);
fdoistau@umanit.fr (F.D.)

* Correspondence: aymeric.stamm@math.cnrs.fr

Abstract: Solutions to assess walking deficiencies are widespread and largely used in healthcare.
Wearable sensors are particularly appealing, as they offer the possibility to monitor gait in everyday
life, outside a facility in which the context of evaluation biases the measure. While some wearable
sensors are powerful enough to integrate complex walking activity recognition models, non-invasive
lightweight sensors do not always have the computing or memory capacity to run them. In this
paper, we propose a walking activity recognition model that offers a viable solution to this problem
for any wearable sensors that measure rotational motion of body parts. Specifically, the model was
trained and tuned using data collected by a motion sensor in the form of a unit quaternion time series
recording the hip rotation over time. This time series was then transformed into a real-valued time
series of geodesic distances between consecutive quaternions. Moving average and moving standard
deviation versions of this time series were fed to standard machine learning classification algorithms.
To compare the different models, we used metrics to assess classification performance (precision
and accuracy) while maintaining the detection prevalence at the level of the prevalence of walking
activities in the data, as well as metrics to assess change point detection capability and computation
time. Our results suggest that the walking activity recognition model with a decision tree classifier
yields the best compromise in terms of precision and computation time. The sensor that was used
had purposely low computing and memory capacity so that reported performances can be thought
of as the lower bounds of what can be achieved. Walking activity recognition is performed online,
i.e., on-the-fly, which further extends the range of applicability of our model to sensors with very low
memory capacity.

Keywords: machine learning; human activity recognition; walk detection; IMU; unit quaternion time
series; time series segmentation

1. Introduction

Loss of autonomy greatly impacts quality of life in general. The ability to walk has
been reported to be the most important skill for people to feel autonomous because it is
fundamental to most of our daily routines [1]. It is therefore critical to provide solutions that
can help to monitor gait. Human gait analysis is defined as the systematic study of human
motion. This is accomplished by measuring a number of parameters that characterize the
movements of the human body [1–4]. Humans walk in a mostly periodic way composed
of steps known as gait cycles. These gait cycles are in turn divided into two parts: a stance
phase, accounting for about 60% of the gait cycle, and a subsequent swing phase, accounting
for the remaining 40% of the cycle [1]. We distinguish kinetics from kinematics data. The
former collect information about strength and muscle activity during motion while the

Sensors 2022, 22, 3555. https://doi.org/10.3390/s22093555 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093555
https://doi.org/10.3390/s22093555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6369-6744
https://orcid.org/0000-0002-8725-3654
https://doi.org/10.3390/s22093555
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093555?type=check_update&version=3

Sensors 2022, 22, 3555 2 of 21

latter collect information about the velocity and acceleration of body segments, joint angles
between body segments, etc. Collecting these data usually requires heavy equipment and a
dedicated room for making the measurements [3–5].

The advent and development of wearable sensors over the last decade offers a natural
alternative as a response to this criticism [2,2,6–8]. In effect, they are lightweight and a lot
less expensive than equipping an entire room with cameras and sensors to record every
move [3–5]. Equipping people with enough tiny motion sensors on body parts such as the
foot [2,9] or the waist [10,11], and post-processing the data using appropriate mathematical
methods and models, is very effective for reaching results similar to those obtained from
dedicated gait monitoring rooms [3–5,12]. In addition, since motion sensors are lightweight
and discrete, they can be worn in daily life without constraint and can therefore provide
the analyst with continuous-time gait information for a better more objective and bias-free
monitoring. This has been done for monitoring leg injuries or post-surgical remission
to propose targeted re-education strategies [13,14] or for detecting loss of independence
among the elderly in everyday life [15–17].

The main limitation of wearable sensors for monitoring gait in daily life situations is
that the collected data does not contain only phases during which the subject is actually
walking. To circumvent this issue, most gait monitoring solutions based on wearable
sensors either collect data in laboratory [2,18] or in a semi free-living environment with
instructions to keep walking during recording [7,8]. However, everyday life gait-monitoring
solutions are key for studying pathologies such as Parkinson’s disease in which gait is not
impacted equally during all times of day. This type of data preprocessing is known in the
literature as human activity recognition (HAR) and can be decomposed into the following
four steps [19]:

1. Data acquisition and cleaning;
2. Data transformation: this step aims at creating novel relevant variables which shall

help subsequent steps;
3. Data segmentation: this step involves change point detection methods to identify

time points along the time series that correspond to a change in activity and output
the corresponding segments.

4. Segment classification: this step aims at merging the previously determined segments
into groups that correspond to distinct activities.

In this paper, we aim at designing a novel walking activity recognition model for
separating walking activity phases from non-walking activity phases using data collected
by wearable sensors. We designed our model by putting ourselves in the worst case scenario
on several aspects: (i) we used hip rotation data which might be less sensitive to gait than
body parts closer to the feet [20] but presents the advantage of being so discrete and non-
invasive that the patient forgets (s)he is wearing it which mitigates the observation bias,
(ii) we used a wearable sensor with low computing power and low memory and (iii) we
targeted real-time (on-the-fly) walking activity detection which is especially important for
low memory devices so that we only store the relevant data. We hypothesize that designing
a walking activity recognition model from data that fulfill these conditions will provide the
most general model for detecting walking activity with expected improved performances
when more sophisticated gait-measuring devices are instead used.

When monitoring gait kinematics, the collected data naturally comes in the form of
three-dimensional rotations. Traditional HAR models can be applied seamlessly on time
series evaluating in Euclidean spaces [19,21,22]. Rotation time series, however, evaluate
on the 3-sphere, which is a non-Euclidean manifold. Therefore, while taking inspiration
from the HAR pipeline, we take on a slightly different approach to accommodate the
non-Euclidean nature of our data. Specifically, we make two main contributions:

• In Step 2, we convert unit quaternion time series into real-valued time series designed
to facilitate subsequent segmentation and classification;

• We combine Steps 3 and 4 into a single step. We indeed segment and classify simulta-
neously by training a classifier from annotated data.

Sensors 2022, 22, 3555 3 of 21

Figure 1 summarizes the proposed modeling strategy. To choose the best classifier, we
rigorously compared the most common supervised classification algorithms used in the
HAR literature [22,23], namely, decision trees [24–26], support vector machine [10,19,24–28],
k-nearest neighbors [24,25,27,28] and logistic regression [28,29]. The notion of best is
intended in terms of both classification performances and short computation time because
the proposed model is to be implemented on the sensor chip itself.

Data acquisition Data transformation Walk detection and extraction

Figure 1. Schematic view of the proposed pipeline. Firstly, by IMU sensors based on the right hip, we
collect daily recording of an individual in the form of unit quaternion time series. We then transform
them into real-valued unidimensional time series. Finally, we detect and extract the different walk
phases of the daily recording by using supervised machine learning algorithms associated with
additional post-treatment.

In summary, we present in detail an efficient and complete model to perform the
detection of walking phases from rotation data recorded in real life settings by a wearable
sensor. Section 2 describes the proposed pipeline in depth. Specifically, we explain (i) how
the annotated data were designed (data acquisition step), (ii) which real-valued time series
we extracted from the rotation time series and why we think these new time series are
particularly relevant to the task of detecting walking phases (data transformation step) and
(iii) how the different classification algorithms work and which metrics we used to tune
and compare them (combined segmentation and classification step). Section 3 is dedicated
to describing how we tuned the algorithms from the training set and to exposing the
performance of the different tuned classifiers on the test set. Finally, Section 4 provides
a discussion of the results along with some recommendations for choosing an optimal
walking phase detection algorithm for integration on the sensor chip. All the codes were
developed in the R language for statistical computing [30].

2. Proposed Walking Activity Recognition Model
2.1. Data Acquisition

We use a MetaMotionR motion sensor [31] to measure hip rotation over time. Figure 2
shows pictures of this sensor alongside with an individual, which demonstrates how non-
invasive it is. The MetaMotionR (MMR) sensor contains an Inertial Measurement Unit (IMU).
The IMU is made of three orthogonal accelerometers, three orthogonal gyroscopes and three
orthogonal magnetometers, mutually aligned to each other. The data collected by these
nine individual sensors are combined by a sensor fusion algorithm [32] implemented on
the chip itself. The MMR sensor has four fusion modes: (i) NDoF which calculates absolute
orientation from accelerometer, gyroscope, and magnetometer data, (ii) IMUPlus which
calculates relative orientation in space from accelerometer and gyroscope data, (iii) Compass
which determines geographic direction from the Earth’s magnetic field and (iv) M4G which
is similar to IMUPlus except rotation is detected with the magnetometer. For the data
acquisition, we chose the NDoF fusion mode to obtain the absolute orientation vector of the
device in the form of a unit quaternion and we used the Android application MetaBase App
developed by Mbientlab to control the device via Bluetooth. We set the options to Quaternion
mode with a sample rate of 100 Hz and to log mode, such that the data are stored in the

Sensors 2022, 22, 3555 4 of 21

device memory before its exportation to the smartphone via Bluetooth. The settings of the
device used for the acquisition are described in Table 1.

Figure 2. The MetaMotionR sensor device alone (left panel) and ready for measurements on an
individual (right panel).

Table 1. Sensor specifications (https://mbientlab.com/tutorials/SensorFusion.html (accessed on 17
March 2022)).

Sensor Range Resolution Sample Rate

Accelerometer ±16 g 16 bit 100 Hz
Gyroscope ±2000◦/s 16 bit 100 Hz

Magnetometer ±1300 µT (x,y-axis),
±2500 µT (z-axis) 0.3 µT 25 Hz

A quaternion is a mathematical object suitable for representing three-dimensional
rotations. It is defined as follows:

Definition 1 (Quaternion). A quaternion q is a four-dimensional vector that can be written as:

q = w + xi + yj + zk, (1)

where w, x, y and z are real numbers and i, j and k are pure complex numbers which satisfy
i2 = j2 = k2 = ijk = −1. We denote by H the space of quaternions. More details about this space
can be found in Appendix A.

In particular, the sensor computes a unit quaternion every 10 ms, which represents
the rotation that brings the hip from its orientation at the beginning of the recording to its
current orientation. The statistical unit in our data set is thus a unit quaternion time series
(uQTS) which can be formally defined as:

Definition 2 (Unit Quaternion Time Series). Let t = (t1, . . . , tP)
> be a grid of P time points

separated by a constant step of ∆t = 10 ms. We define a unit quaternion time series (uQTS) on
this grid as:

q(t) = (q(t1), . . . , q(tP))
>, (2)

where q(t`) = w(t`)+ x(t`)i+ y(t`)j+ z(t`)k ∈ Hwith ‖q(t`)‖2 = w(t`)2 + x(t`)2 + y(t`)2 +
z(t`)2 = 1 for all ` = 1, . . . , P.

To the best of our knowledge, there has not been any experimental design in the
literature for this type of data. Already published works usually focus either on acceleration,

https://mbientlab.com/tutorials/SensorFusion.html

Sensors 2022, 22, 3555 5 of 21

gyroscopic or magnetometer data [11,33], or on GPS data [9,34]. The purpose of this work
is to identify walking activity phases in a data set measuring daily life activities. These
walking phases are intended to be fed into subsequent algorithms to achieve an objective
and quantitative charaterization of the gait in the form of spatio-temporal parameters or
kinematics parameters. We chose the quaternion representation for rotation data for the
following three reasons:

• Estimating the orientation of a device by integration of the angular velocity measured
by the gyroscopes is known to be biased by the presence of a drift that increases with
the acquisition time. This leads to unreliable measures [35], especially in the context
of recording daily life activities over long periods of time. The use of sensor fusion
algorithms is a popular strategy to overcome this issue [20].

• Unit quaternions are very convenient for representing 3D rotations and orientations,
as they are less computationally demanding than rotation matrices or Euler angles and
they do not suffer from the gimbal lock [36].

• Some gait analysis methods rely on representing the orientation of body segments with
unit quaternions to determine the gait kinematic or spatio-temporal parameters [37–40].
These methods can therefore be directly applied on the walking activity phases identi-
fied with the proposed algorithm to quantify several aspects of gait.

A proper HAR method is therefore needed to identify walking activity phases from
quaternion time series data. As stated before, current HAR methods are not suitable for
this data type. Nevertheless, all these works aim at performing the same task of tuning and
comparing machine learning algorithms for solving HAR problems. As such, they share a
number of commonalities in their experimental design which we can take inspiration from.
For instance, in the works of Ortiz [33], Anguita et al. [41], Ortiz [42], Kwapisz et al. [11],
Garcia-Gonzalez et al. [34] and Beaufils et al. [9], we can grasp two key experimental setup
features: (i) the type of activities are kept relatively simple among all types of activities
that an individual can subject themselves to in a free living environment and (ii) it is
important to mark a pause in-between two activities when building the training set because
it facilitates time point labelling in the different activities.

Since the motivation of our solution is to monitor walking deficiencies, we therefore
decided to limit the type of walking activities to the following list: straight line, curved
line, walk up and down the stairs and sit on/stand up from a chair. We did not include
running or jumping activities. We included a pause of 3 s at each change of activity. The
final design of the walking path that we adopted is sketched in Figure 3.

Legend:
start and end point of the trail path
10 m of straight walk
make a U-turn
curved walk
climb/go down the stair
3 m of straight walk
make a U-turn and sit/stand up
from a chair
chair
walk around a table

Figure 3. Schematic representation of the path that all subjects followed as part of the experimental
design. The total length was approximately 70 m.

The final data set is composed of 28 different trials of this walking path recorded
on 3 different healthy volunteers (2 men and 1 woman). Every participant walked this
path 10 times on average, with randomly assigned times of day (night excluded) to avoid
any bias induced by daily routine. Table 2 summarises the information pertaining to the
acquired data.

Sensors 2022, 22, 3555 6 of 21

Table 2. Summary table of the data acquired following the experimental setup.

Volunteer Number of Trials Total Recording Time Age
(minute) (year)

V1 8 11 40
V2 9 14 35
V3 11 15 23

The total length of recording was about 40 min. One can notice from Table 2 that the
data set is well balanced since each participant made approximately the same number of
trials. Moreover, each run was about 90 s long, regardless of the participant. Overall, all
subjects are equally represented in the data set. Figure 4 shows an example of uQTS as
recorded by the motion sensor when an individual performed the walking path described
in Figure 3.

0 20 40 60 80 100 120

-0
.5

0.
0

0.
5

Time (seconds)

uQ
T

S

w x y zchange point

Figure 4. Example of a unit quaternion time series (uQTS) recorded by the MetaMotionR sensor. It
traces the hip rotation of an individual while (s)he walked the path described in Figure 3. Orange
vertical dotted lines represent the time points at which the type of walking activity changes.

2.2. Feature Space

Unit quaternions belong to a non-Euclidean manifold and, as such, most machine
learning algorithms do not handle such data as predictors. As a result, it can be useful to
transform uQTS into real-valued time series because that will provide access to all existing
machine learning classifiers. In addition, we strongly believe that using less data in terms
of quantity of variables but more data in terms of informativeness is key to estimate more
interpretable yet still competitive models.

Given the uQTS q(t), the quaternion q` := q(t`) measured at time t` represents the
rotation that brings the hip from its orientation at the beginning of the recording to its
current orientation. Consequently, we can define the following time series:

Definition 3 (Quaternion Finite Difference Time Series). Let q(t) = (q1, . . . , qP)
> :=

(q(t1), . . . , q(tP))
> be a uQTS defined on grid t = (t1, . . . , tP). We define the quaternion fi-

nite difference time series (QFDTS) of a uQTS as:

∆q(t) =
(

q−1
1 q2, . . . , q−1

P−1qP

)>
, (3)

where the inverse and (Hamiltonian) product for quaternions are defined in Appendix A.

Sensors 2022, 22, 3555 7 of 21

Observe that ∆q(t) is in fact defined on a grid of size P − 1. Each element of the
QFDTS is again a unit quaternion which represents the rotation that brings the hip from its
orientation at the previous time point to its orientation at the current time point. This is a
more practical uQTS for the task of detecting changes in activity type because one can make
the reasonable assumption that the hip rotation in an interval of 10 ms should be negligible
during a given type of activity, but significantly larger at the transition between two types
of activity. Following this line of reasoning, it makes sense to subsequently compute the
real-valued time series of the norm of quaternions in ∆q(t), which is nothing but the time
series of the geodesic distances between two consecutive quaternions (see Appendix A). This
time series will in fact represent the angle in radian between two consecutive quaternions.

Definition 4 (Quaternion Distance Time Series). We define the real-valued time series of geodesic
distances between consecutive quaternions in a uQTS q(t), coined quaternion distance time
series (QDTS) of the uQTS, as:

d(t) = (d1, . . . , dP−1)
> =

(
‖q−1

1 q2‖, . . . , ‖q−1
P−1qP‖

)>

= 2
(

arccos
[
Re(q−1

1 q2)
]
, . . . , arccos

[
Re(q−1

P−1qP)
])>

(4)

Figure 5 shows an example of QDTS computed from a uQTS.

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Time (seconds)

Q
D

T
S

change point

Figure 5. Quaternion distance time series computed from the uQTS shown in Figure 4.

We can observe that raw QDTS are, in general, very noisy, which is as expected since,
by definition, they rely on a finite difference scheme typically used to numerically approach
derivatives. We therefore used a sliding window to produce a smoothed version of the QDTS.
Keeping in mind that the solution should later be implementable on the sensor chip to label
time points as walking or non-walking activity in a streamlined fashion, we use a left hand-side
sliding window instead of a centered one because future time points will, by definition, not
be available for smoothing a given time point. We therefore introduce the following

Definition 5 (Local Mean Quaternion Distance Time Series). Let d(t) = (d1, . . . , dP)
> be

a QDTS as introduced in Definition 4. Given a window size of h, we define the local mean
quaternion distance time series (LM-QDTS) as:

d(h)(t) =
(

d(h)(t1), . . . , d(h)(tP)
)>

=
(

d(h)1 , . . . , d(h)P

)>
, (5)

Sensors 2022, 22, 3555 8 of 21

where d(h)` is the circular mean of the angles d(tmax(`−h,1)), . . . , d(t`), which reads [43]:

d(h)` = atan2

`

∑
m=max(`−h,1)

sin d(tm),
`

∑
m=max(`−h,1)

cos d(tm)

.

Observe that, consistently, if the window size is h = 0, then d(0) = d as expected.
Figure 6 shows an example of LM-QDTS computed from a uQTS.

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

Time (seconds)

LM
-Q

D
T

S

change point

Figure 6. Local Mean QDTS computed from the uQTS in Figure 4 using a sliding window h = 50
(0.5 s).

The LM-QDTS is naturally a good candidate to use as a predictor to label time points
in different types of activities. Nevertheless, if an individual switches activities too quickly,
the LM-QDTS might miss the transitions. We therefore introduce a second real-valued time
series that computes a local circular standard deviation on the LM-QDTS.

Definition 6 (Local Standard Deviation Quaternion Distance Time Series). Given a window

size of h, let d(h)(t) =
(

d(h)1 , . . . , d(h)P

)>
be a LM-QDTS as introduced in Definition 5. We define

the local standard deviation quaternion distance time series (LSD-QDTS) as:

σ(h)(t) =
(

σ(h)(t1), . . . , σ(h)(tP)
)>

=
(

σ
(h)
1 , . . . , σ

(h)
P

)>
, (6)

where σ
(h)
` is the circular standard deviation of the angles d(h)max(`−h,1), . . . , d(h)` , which reads [44]:

σ
(h)
` =

√√√√√−2 ln

∣∣∣∣∣∣
1

min(`, h + 1)

`

∑
m=max(`−h,1)

(
cos d(h)m + i sin d(h)m

)
∣∣∣∣∣∣
.

Consistently, if h = 0, the LSD-QTDS is a time series full of zeroes. Figure 7 shows an
example of LSD-QDTS computed from a uQTS.

We will work only with these two novel real-valued time series in the study. Specifi-
cally, they will be used as the only two predictors in all machine learning algorithms that
will be compared to perform the joint segmentation and classification step of the model
outlined in Figure 1. This choice is motivated by the fact that these two real-valued time
series allow us to visually separate the different types of activity pretty well.

Sensors 2022, 22, 3555 9 of 21

0 20 40 60 80 100 120

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Time (seconds)

LS
D

-Q
D

T
S

change point

Figure 7. Local standard deviation QDTS computed from the uQTS in Figure 4 using a sliding
window h = 50 (0.5 s).

2.3. Supervised Classification Models

The pipeline summarized in Figure 1 requires a machine learning algorithm for per-
forming the step of jointly segmenting the signal and classifying the time points into
walking or non-walking activities. As part of the experimental design, each time point
of the collected data was carefully labelled as being part of a walking or non-walking
activity. In addition, we designed a feature space composed of two variables that are the
values at each time point of the LM-QDTS and the LSD-QDTS, properly normalized (see
Figure 8). We therefore aim to train an appropriate classifier that uses this feature space to
predict time point labels into walking or non-walking activities. We used the tidymodels
(https://www.tidymodels.org (accessed on 17 March 2022)) consistent ecosystem of R
packages to train, tune, test and compare models. We focused on the classification methods
that have been so far used in the HAR community. As such, we compared a total of four
classification methods, namely:

Decision Tree. The model is a tree made from a list of if/then statements based on
thresholding covariates of the feature space. Decision trees rely on a total of three pos-
sible hyper-parameters: (i) the tree depth, (ii) the minimum number of time points
in a node that grants it authorization to be split further and (iii) the complexity pa-
rameter for penalizing complex tree structures to avoid over-fitting. In the tidymod-
els (https://parsnip.tidymodels.org/reference/decision_tree.html (accessed on 17 March
2022)) ecosystem, decision trees can be estimated by three different algorithms, namely
the Classification And Regression Tree (CART) algorithm [45] of the rpart package, the
C5.0 algorithm [46] of the C50 package and an in-house algorithm from Spark (https:
//spark.apache.org (accessed on 17 March 2022)) in the sparklyr package. We opted for
the CART algorithm, which is the most flexible. In particular, it offers control over the size
of the tree, which provides more interpretable trees. We tuned all three hyper-parameters.
Support Vector Machine (SVM). This model divides the feature space in three parts: (i) an
area in which non-walking points are more likely, (ii) an area in which walking points are
more likely and (iii) a margin that separates the first two areas [47]. In the tidymodels
ecosystem, there are three types of SVM models, namely linear, polynomial and radial basis
function (RBF) SVMs. Figure 8 suggests that we should aim at a non-linear border and that
walking points are surrounded by non-walking points. This type of topology is usually well
captured by radial basis function support vector machines (https://scikit-learn.org/stable/auto_
examples/classification/plot_classifier_comparison.html (accessed on 17 March 2022)),
(https://gist.github.com/WittmannF/60680723ed8dd0cb993051a7448f7805 (accessed on 17
March 2022)). Classification-based RBF SVMs rely on a total of two hyper-parameters: (i) a

https://www.tidymodels.org
https://parsnip.tidymodels.org/reference/decision_tree.html
https://spark.apache.org
https://spark.apache.org
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://gist.github.com/WittmannF/60680723ed8dd0cb993051a7448f7805

Sensors 2022, 22, 3555 10 of 21

real positive number representing the cost of predicting a sample within or on the wrong
side of the margin and (ii) a real positive number which controls the RBF Gaussian kernel
standard deviation. In the tidymodels (https://parsnip.tidymodels.org/reference/svm_
rbf.html (accessed on 17 March 2022)) ecosystem, RBF SVMs can be estimated by only
one algorithm, namely ksvm (https://parsnip.tidymodels.org/reference/details_svm_rbf_
kernlab.html (accessed on 17 March 2022)) from the kernlab package [48]. We tuned both
hyper-parameters in this model.

−1

0

1

2

−1 0 1 2
LM−QDTS

LS
D

−
Q

D
T

S Walking Activity

No

Yes

Figure 8. Normalized feature space. Time points referring to walking activities are contrasted with
time points referring to non-walking activities using colored points and filled convex hulls.

k-Nearest-Neighbors (k-NN). This model uses the k most similar time points from the
training set to predict membership of new time points from majority voting. Nearest
neighbor models rely on a total of three hyper-parameters: (i) the number k of neighbors
used for predicting group membership of a new time point, (ii) the Minkowski distance
power p for assessing how far two time points are in the feature space and (iii) a kernel
function used to weight distances between time points. In the tidymodels (https://parsnip.
tidymodels.org/reference/nearest_neighbor.html (accessed on 17 March 2022)) ecosystem,
k-NN models can be estimated by only one algorithm, namely kknn (https://parsnip.
tidymodels.org/reference/details_nearest_neighbor_kknn.html (accessed on 17 March
2022)) [49]. We opted for the default optimal weighting kernel [50] as all kernel functions
gave the same results. We tuned the distance power p and the number k of neighbors.
Logistic Regression. The logit transform of the probability of being a walking time
point is modeled as a linear combination of the variables in the feature space. It is
possible to add a penalty when fitting this model to mitigate overfitting. This adds
two hyper-parameters: (i) a global weight that defines the overall amount of penal-
ization for complex models and (ii) a mixture parameter that amounts to the propor-
tion of L1 regularization (LASSO) with respect to L2 regularization (Ridge). In the
tidymodels (https://parsnip.tidymodels.org/reference/logistic_reg.html (accessed on 17
March 2022)) ecosystem, logistic regression models can be estimated by six different algo-
rithms. We opted for the simplest one, carried out by the glm (https://parsnip.tidymodels.
org/reference/details_logistic_reg_glm.html (accessed on 17 March 2022)) function of
the stats package [51]. In effect, all the other engines aim to include the penalty hyper-
parameters which we do not need since the feature space is only two-dimensional. Logistic
regression models predict class probabilities. We therefore tune a single hyper-parameter
which is a threshold that turns such probability into a hard membership.

https://parsnip.tidymodels.org/reference/svm_rbf.html
https://parsnip.tidymodels.org/reference/svm_rbf.html
https://parsnip.tidymodels.org/reference/details_svm_rbf_kernlab.html
https://parsnip.tidymodels.org/reference/details_svm_rbf_kernlab.html
https://parsnip.tidymodels.org/reference/nearest_neighbor.html
https://parsnip.tidymodels.org/reference/nearest_neighbor.html
https://parsnip.tidymodels.org/reference/details_nearest_neighbor_kknn.html
https://parsnip.tidymodels.org/reference/details_nearest_neighbor_kknn.html
https://parsnip.tidymodels.org/reference/logistic_reg.html
https://parsnip.tidymodels.org/reference/details_logistic_reg_glm.html
https://parsnip.tidymodels.org/reference/details_logistic_reg_glm.html

Sensors 2022, 22, 3555 11 of 21

Table 3 summarizes for each model the hyper-parameters on which they rely and that
need to be set along with the tuning grid that was used for each of them. The model tuning
will be detailed in the dedicated Section 3.2.

Table 3. Supervised Classification Models. Summary table of the compared models to perform the
joint segmentation and classification of time points into walking and non-walking activities. For
each model, hyper-parameters to be tuned are listed (following the tidymodels (https://parsnip.
tidymodels.org (accessed on 17 March 2022)) naming conventions) along with the grid that was used
for tuning. The notation x:y:z is a shorthand for all values between x and z included with a step of y.

Model Hyper-Parameters Tuning Grid

Decision Tree
cost_complexity
tree_depth

10-10:1:-1

1:1:10

Radial Basis Function SVM
cost
rbf_sigma

2-5:1:5

10-10:1:0

k-NN
neighbors
dist_power

1:2:67
1, 2

Logistic Regression threshold 0.05:0.05:0.95

These classification algorithms predict whether a time point corresponds to a walking
or non-walking activity independently for each time point. The natural time dependency
inherited from the time series structure of the collected data is in effect not accounted for.
In the next section, we propose two post-processing strategies to smooth the predictions a
posteriori using the intrinsic time dependency.

2.4. A Posteriori Smoothing

One can use one of the above properly tuned supervised classification method to
make a prediction as to whether a time point refers to a walking activity or not. We will
refer to these predictions as the raw predictions. It is possible to improve upon the raw
predictions by acknowledging the intrinsic time dependency in the data collected for a
single individual. Specifically, we propose the following a posteriori smoothing:

1. Perform a change point detection in which a change point is defined as a time point
with a given type of activity immediately followed by a time point associated with a
different activity.

2. Compute the elapsed time between two consecutive change points, starting with the
elapsed time until the first detected change point and ending with the elapsed time
from the last detected change point.

3. Update the list of change points, keeping only the first out of any two consecutive
change points that occurred in less than τ seconds.

4. Label all time points between two change points as referring to walking activities if
the number of raw predictions in favor of walking activities in that interval exceeds a
given threshold η. Otherwise label them as referring to non-walking activities.

The a posteriori smoothing step is applied to each time series and generates smoothed
predictions. The hyper-parameters τ and η were also tuned using grids of 0:0.05:3
seconds and 0.05:0.05:0.95, respectively. The upper bound on the grid for τ follows
from the experimental design in which we included 3-second breaks in between activity
changes. Hence, two consecutive change points cannot be considered too close if they are
over 3-seconds apart.

3. Tuning and Comparing Walking Activity Recognition Models
3.1. Data Splitting Scheme

The original data included 28 trials for a total of 240,340 time points. We performed an
initial split to obtain:

https://parsnip.tidymodels.org
https://parsnip.tidymodels.org

Sensors 2022, 22, 3555 12 of 21

• A training set with 75% of the trials (i.e., 21 trials for a total of 173,120 time points) that will
be used for training (i.e., estimating and tuning) the supervised classification models;

• A test set with 25% of the trials (i.e., seven trials for a total of 67,220 time points) that
will be used for computing performance metrics for each tuned model to pick the one
that best fits our purpose.

The training set fits two purposes: model estimation and model tuning. The latter
refers to optimizing the hyper-parameters of each model to achieve optimal performance,
in which optimal is to be defined in Section 3.2. We achieve this by resorting to a 5-fold
cross-validation scheme. This effectively generates 5 different splits of the training set into:

• an analysis set, with 80% of the trials from the training set (i.e., around 17 trials), used
for model estimation;

• an assessment set, with 20% of the trials from the training set (i.e., around four trials),
used for evaluating model performance.

This cross-validation strategy provides five independent estimates of each perfor-
mance metric from which we could obtain a mean value and a standard error estimate.
Figure 9 summarizes the full data splitting scheme.

Original Data Set (28 trials, 240 340 time points)

Training Set (21 trials, 173 120 time points) Test Set

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Split 2

Split 3

Split 4

Split 5

1. Model Tuning: For each split (Section 3.1), each model is fitted using the blue folds for a number of
combinations of its hyper-parameters (Section 2.3). Performance metrics (Section 3.2) are evaluated using the left-

out fold in each split to choose the best set of hyper-parameters (Section 3.4).

2. Model Comparison:
Optimally tuned models are used

against the test set to predict
whether time points refer to a
walking activity or not. A more
complete set of performance

metrics (Section 3.3) are used to
select the best final model.

<latexit sha1_base64="aPgBETaJMWQCOyI+b+PrVtvU4EY=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkkhRl6VuXLioYB/QFknSaRyaF5OJUII7f8Ctfpj4B/oX3hlTUIvohCRnzj3nztx73STgqbSs15KxsLi0vFJeXVvf2NzaruzsdtI4Ex5re3EQi57rpCzgEWtLLgPWSwRzQjdgXXdyruLdOyZSHkfXcpqwYej4ER9zz5FEdQdN7vuD/KZStWqWXuY8sAtQRbFaceUFA4wQw0OGEAwRJOEADlJ6+rBhISFuiJw4QYjrOMM91sibkYqRwiF2Ql+fdv2CjWivcqba7dEpAb2CnCYOyROTThBWp5k6nunMiv0td65zqrtN6e8WuUJiJW6J/cs3U/7Xp2qRGONM18CppkQzqjqvyJLprqibm1+qkpQhIU7hEcUFYU87Z302tSfVtaveOjr+ppWKVXuv0GZ4V7ekAds/xzkPOsc1+6RWv6pXG81i1GXs4wBHNM9TNHCBFtq6ykc84dm4NIQxNfJPqVEqPHv4toyHD5P3kfY=</latexit> (

<latexit sha1_base64="aPgBETaJMWQCOyI+b+PrVtvU4EY=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkkhRl6VuXLioYB/QFknSaRyaF5OJUII7f8Ctfpj4B/oX3hlTUIvohCRnzj3nztx73STgqbSs15KxsLi0vFJeXVvf2NzaruzsdtI4Ex5re3EQi57rpCzgEWtLLgPWSwRzQjdgXXdyruLdOyZSHkfXcpqwYej4ER9zz5FEdQdN7vuD/KZStWqWXuY8sAtQRbFaceUFA4wQw0OGEAwRJOEADlJ6+rBhISFuiJw4QYjrOMM91sibkYqRwiF2Ql+fdv2CjWivcqba7dEpAb2CnCYOyROTThBWp5k6nunMiv0td65zqrtN6e8WuUJiJW6J/cs3U/7Xp2qRGONM18CppkQzqjqvyJLprqibm1+qkpQhIU7hEcUFYU87Z302tSfVtaveOjr+ppWKVXuv0GZ4V7ekAds/xzkPOsc1+6RWv6pXG81i1GXs4wBHNM9TNHCBFtq6ykc84dm4NIQxNfJPqVEqPHv4toyHD5P3kfY=</latexit> (

Figure 9. Data Splitting Scheme. The full data set was first divided into a training set (75%) and a test
set (25%). The training set was further divided into an analysis set (80%) and an assessment set (20%).
A total of five such splits were achieved through five-fold cross-validation.

3.2. Tuning Strategy

We performed tuning in a two-step fashion: (i) tuning of the supervised classification
models and (ii) tuning of the a posteriori smoothing using the tuned models. We adopted a
common tuning strategy for both steps. When assigning a time point to a given type of
activity, we might get it right but we might also make a mistake, as summarized by the
following two-way table:

Using the notations from Table 4, since the ultimate goal is to monitor walking activi-
ties, what really matters then are the following two aspects:

• We want to be as sure as possible that a time point assigned to a walking activity
(TP + FP) does actually correspond to a walking activity (TP); this is achieved by
maximizing the precision TP/(TP + FP).

• We want to make sure that the walking activity recognition pipeline assigns time points
to a walking activity a reasonable amount of times; this is achieved by maintaining
the detection prevalence (TP + FP)/(TP + FP + TN + FN) as close as possible to
the actual prevalence of walking activities in the collected data.

Sensors 2022, 22, 3555 13 of 21

Table 4. Confusion Matrix of Classification Predictions.

Time point corresponds to
walking activities

Time point corresponds to
non-walking activities

Time point is predicted as
walking activities True Positive (TP) False Positive (FP)

Time point is predicted as
non-walking activities False Negative (FN) True Negative (TN)

Following these two principles, we adopted the following strategy for tuning:

1. Find the combination of hyper-parameters that led to the detection prevalence clos-
est to the actual prevalence of walking activities. We will refer to this detection
prevalence value as the optimal detection prevalence in the subsequent step.

2. Keep all combinations of hyper-parameters that led to a detection prevalence that
stays within one standard error of this optimal detection prevalence.

3. Find the combination of hyper-parameters that led to the highest precision. We will
refer to this precision value as the optimal precision in the subsequent step.

4. Keep all combinations of hyper-parameters that led to a precision that stays within
one standard error of this optimal precision.

5. If there is still more than one remaining combination of hyper-parameters, apply a
similar filter for maximizing the accuracy (TP + TN)/(TP + FP + TN + FN).

6. If there is still more than one remaining combination of hyper-parameters, choose the
hyper-parameters that yield the simplest model according to the following rules:

• for decision tree: smallest cost_complexity (this penalty avoids over-fitting
but the feature space is two-dimensional so it can be kept small) and smallest
tree_depth (for favoring interpretability);

• for radial basis function SVM: smallest cost (smoother margin);
• for nearest neighbors: smallest neighbors (more memory-effective);
• for logistic regression: highest threshold (more caution when predicting walk-

ing activity);
• for a posteriori smoothing: first highest η (more caution when predicting walking

activity), then smallest distance threshold τ between change points (least possible
changes w.r.t. raw predictions).

3.3. Performance Metrics for Choosing the Best Walking Activity Recognition Model

We used the tuning strategy described in Section 3.2 to obtain a total of four different
walking activity recognition models (WARMs), one for each supervised classification model
in Section 2.3. We can then use the test set generated during the data splitting step described
in Section 3.1 to compute a number of performance metrics for choosing the best tuned
WARM. In this section, we describe these performance metrics, which can be divided into
three categories: (i) classification metrics, which focus on whether each single time point
has been assigned the correct type of activity (Section 3.3.1), (ii) segmentation metrics,
which focus on whether each activity session (set of consecutive time points with common
activity) has been assigned the correct type of activity (Section 3.3.2) and (iii) computation
time (Section 3.3.3).

A common consideration to both classification and segmentation metrics that should
be take into account is that the initial manual labelling of the change points (true classes)
has been performed within a margin of error of 25 ms. Therefore, prior to computing the
performance metrics, we filtered out all manually labelled change points as well the 12 time
points before and after each of them.

3.3.1. Classification Metrics

As explained in Section 3.2, the end-goal is to monitor walking activities which led us
to tune the WARMs to achieve optimal detection prevalence and precision, and possibly

Sensors 2022, 22, 3555 14 of 21

accuracy and area under the ROC curve. We will therefore also compute these metrics by
referring to Table 4 applied to the test set.

3.3.2. Segmentation Metrics

The classification metrics focus on assessing performance for well assigning a type of
activity to a given time point. Here, we turn the focus to assessing whether each activity
session (set of consecutive time points with common activity) has been assigned the correct
type of activity.

Each measured time series is filled with walking sessions and non-walking sessions.
These are deduced by the true classes of each time point that have been annotated as part
of the experimental design. Figure 10a shows an example of such a segmentation. After
running a WARM, we can segment the time series according to the predicted classes instead
of the true classes, which leads to segments corresponding either to presumably walking
sessions or to presumably non-walking sessions. Figure 10b shows an example of such
a segmentation.

Combining both segmentations (the true one and the predicted one), we can achieve a
four-class segmentation as shown in Figure 10c,d into true positive (TP) segments (blue),
true negative (TN) segments (yellow), false positive (FP) segments (green) and false neg-
ative (FN) segments (red). This effectively transposes the confusion matrix from one
focused on time points to one focused on activity sessions. From this segmentation-focused
confusion matrix, we will compute both precision and accuracy.

0 0 0 1 1 1 1 0 0 1 1 1

0 0 1 1 1 1 0 0 0 1 1 1

(0,0) (0,0) (0,1) (1,1) (1,1) (1,1) (1,0) (0,0) (0,0) (1,1) (1,1) (1,1)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

(0,0) (0,1) (1,1) (1,0) (0,0) (1,1)

(a) True Classes

(b) Predicted Classes

(c) 4-Class Labelling

(d) 4-Class Segmentation

Figure 10. Segmentation Performance. Each cell is a time point. Yellow cells correspond to non-
walking activities (encoded by 0); blue ones to walking activities (encoded by 1). Green cells are
predicted to be walking sessions but are not, and red ones are the contrary. In a pair code, the left
number encodes the true class while the right number encodes the predicted one.

3.3.3. Computation Time

Finally, the computing efficiency of the different machine learning approach tested in
the walk detection pipeline is compared using computing time. Indeed, for two machine
learning algorithms which have a similar classification and segmentation performance, we
prefer the one which is faster than the other one because it would be more implementable
in the sensors for a real time walk phase detection.

3.4. Results

All the statistical analyses were performed on an iMac with an Apple M1 chip using
the R programming language for statistical computing [30].

3.4.1. Tuning of Model Hyper-Parameters

We first tuned the hyper-parameters of each model independently using the strat-
egy outlined in Section 3 and the grids defined in Table 3. The optimal parameters are
summarised in Table 5.

Sensors 2022, 22, 3555 15 of 21

Table 5. Optimal hyper-parameters after model tuning. Summary table of the optimal hyper-
parameters obtained using the strategy outlined in Section 3 and the grids defined in Table 3.

Model Hyper-Parameters Optimal Value Precision Accuracy

Decision Tree
cost_complexity
tree_depth

10−10

3
0.81 0.82

Radial Basis Function SVM
cost
rbf_sigma

16
10−6 0.71 0.72

k-NN
neighbors
dist_power

3
2 0.74 0.75

Logistic Regression threshold 0.5 0.75 0.76

The results substantially reveal that (i) the optimal decision tree model has a small
depth and no penalty should be used, which was expected given the small dimension of
the feature space, (ii) the optimal SVM model favors a rather complex margin surface in
order to keep the detection prevalence at the level of the prevalence of walking activities
in the data, (iii) the optimal k-NN model uses only three neighbors in order to maintain
the detection prevalence at the level of the prevalence of walking activities in the data, and
(iv) the logistic regression soft prediction should be thresholded at 0.5, which means that it
is not necessary to penalize more abruptly walking activity predictions.

The results also clearly demonstrate that the decision tree outperforms all the other
considered models in terms of precision and accuracy. This makes sense because one makes
the most out of more complex models such as SVM or k-NN when the feature space is
high-dimensional, which is not the case in the present situation. The optimal decision tree
is easy to interpret and to visualise as shown by Figure 11. We can observe that, at the root
node, the probability for a time point to be associated with a walking activity is of 0.46,
which indeed matches the prevalence of walking activities in the data.

LM−QDTS < −0.42

LSD−QDTS >= 0.46

LM−QDTS >= 1

No
0.46

100%

No
0.10
36%

Yes
0.67
64%

No
0.27
15%

Yes
0.79
49%

No
0.39
3%

Yes
0.82
46%

yes no

Figure 11. Optimal Decision Tree. Final decision tree estimated on the normalized feature space via
the CART algorithm, tuned to maintain the detection prevalence at the level of the prevalence of
walking activities in the data and to maximize precision first and accuracy if possible. In each node of
the tree, the first row indicates the hard prediction where “No” stands for non-walking activity while
“Yes” stands for walking activity; the second row reports the soft prediction, i.e., the probability for
a time point to be associated with a walking activity; the third row displays the proportion of data
points in the training set that fall into the node.

3.4.2. Tuning of Smoothing Hyper-Parameters

The tuned models make a prediction independently for each time point. This does
not account for the time dependency. In Section 2.4, we exposed an a posteriori smoothing

Sensors 2022, 22, 3555 16 of 21

strategy that uses time dependency to adjust the raw predictions. This step depends on
two hyper-parameters, namely the minimal distance τ between two consecutive change
points and the proportion η of walking time points above which a segment is labeled as
walking activity. Table 6 summarizes the optimal values for these parameters, along with
the achieved precision and accuracy.

Table 6. Optimal hyper-parameters after smoothing tuning. Summary table of the optimal hyper-
parameters for the a posteriori smoothing step obtained using the strategy outlined in Section 3 and
the grids defined in Table 3.

Model

Minimal Distance
τ between

Consecutive
Change Points

Proportion η of
Walking Time
Points above

Which a Segment
Is Labeled as

Walking Activity

Precision Accuracy

Decision Tree 2.20 s 30% 0.88 0.84
Radial Basis Function SVM 2.00 s 30% 0.78 0.74
3-NN 1.60 s 45% 0.89 0.84
Logistic Regression 2.45 s 30% 0.83 0.78

We can observe that, for all four models, the a posteriori smoothing strategy sys-
tematically improves upon the raw predictions in terms of precision and accuracy. After
tuning the smoothing hyper-parameters, two models appear to equally outperform the
others, namely the decision tree and 3-NN models. Hence, the final best tuned WARM
consists of using either the decision tree displayed in Figure 11 or the 3-NN model, and of
adjusting their raw predictions using the smoothing strategy outlined in Section 2.4 with
hyper-parameter values as reported in Table 6.

3.4.3. Performances of Best Tuned WARMs on the Test Set

We finally evaluated all four optimally-tuned WARMs on the test set that we left
apart before any tuning steps. Table 7 reports both classification and segmentation metrics
(precision and accuracy) as described in Sections 3.3.1 and 3.3.2, as well as the computation
time required to achieve the predictions on the test set.

Table 7. Performances of the optimally tuned WARMs on the test set.

Model
Classification Metrics Segmentation Metrics Time

Precision Accuracy Precision Accuracy (seconds)

Decision Tree 0.77 0.84 0.53 0.55 0.4
Radial Basis Function SVM 0.70 0.76 0.57 0.53 181.9
3-NN 0.80 0.85 0.49 0.55 35.7
Logistic Regression 0.75 0.81 0.55 0.53 0.3

Overall, all classification metrics (expect for the accuracy of the logistic model) are
lower on the test set with regard to the training set, which was, of course, expected. From
the perspective of these metrics, the 3-NN model stands out and the decision tree comes
in second position. When we balance this with the computation time, the recommended
WARM to implement on the sensor chip is clearly the one with the decision tree model.

From the perspective of the segmentation metrics, all WARMs behave similarly. What
is interesting from these results is that segmentation metrics are largely lower than classi-
fication metrics. This substantially indicates that mis-classification mainly occurs during
short periods of time. This is encouraging as it suggests that long walking activities are
usually well predicted by the proposed pipelines.

Sensors 2022, 22, 3555 17 of 21

4. Discussion and Conclusions

This article presents a novel walking activity recognition model (WARM) for separating
walking activity phases from non-walking activity phases, as the data are collected by a
wearable sensor for a usage in real life conditions. We trained, tuned and compared a
number of possible WARMs on the basis of data collected from a motion sensor with low
computing and memory resources that measures the rotation of the hip over time in the form
of a time series of unit quaternions. The choice of this experimental design was motivated
by the fact that this type of wearable sensors are the most challenging, because one needs
to think carefully about a feature space that should be quick to compute and not too heavy
to store (since it has to be done on the fly by a sensor with low computing and memory
resources), while guaranteeing good classification performances. The contributions of
the paper are two-fold: (i) we carefully designed a minimal feature space converting
unit quaternion time series into suitable real-valued time series and (ii) we proposed a
smoothing step that accounts for the time dependency to improve upon the raw predictions
computed by state-of-the-art classification models. The designed feature space along with
the choice of a classification model and the a posteriori smoothing step define a WARM.
We compared a total of four WARMs with four different classification models (decision
tree, radial basis function SVM, k-NN and logistic regression). This was achieved by first
carefully designing an experiment that gave us access to the ground truth activity types
(walking vs. non-walking time points). We divided the collected data into a training set and
a test set that was left apart for a final comparison. The training set was used in a five-fold
cross-validation scheme to tune the hyper-parameters of the models and of the smoothing
step. The WARMs were compared on the basis of achieved precision and accuracy and
computation time. Given the results detailed in Section 3.4, and the constraint to implement
the WARM on the sensor chip itself, we recommend to use the WARM with the decision
tree model. This WARM achieved a precision of 88% on the training set and of 77% on the
test set while maintaining the detection prevalence at the level of the prevalence of walking activities
in the data, which is quite remarkable, given the simplicity of the feature space.

Since the experimental design targeted the most challenging wearable sensors, the
proposed WARM may work seamlessly with any other wearable sensor that collects rotation
data of body parts with performances expected to be even better (if, for instance, one wears
it closer to the feet). The reported precision and accuracy are to be thought of as lower
bounds. When using more powerful wearable sensors, one could also think of enriching
the feature space, which might further improve the performance of the WARM. In the
future, it could be interesting to add other comparison metrics especially designed for
classification problems involving time series, such as the ones proposed by Gensler and Sick
[52]. Additionally, we are currently in the process of significantly increasing the database.
We will therefore update all the models once it is finalized at a later point in time. In
addition, we plan to investigate other transformations of the unit quaternion time series
that could complement well the current feature space. The k-NN model also deserves
particular attention because it stands out on the test set and could be straightforwardly
generalized to directly use the original unit quaternion time series without transformation
into real-valued ones. Finally, there are a number of other strategies that we have in mind
to account for time dependency that we shall compare.

Author Contributions: R.B. is the main author, meaning that he wrote the article, create the methodol-
ogy present in the article, the database and the R code used. L.B. and A.S. helped for the methodology,
review and editing the manuscript. L.C., F.D. and P.D. participated in our data acquisition process.
All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by Agence pour les Mathématiques en Interaction avec l’Entreprise
et la Société (AMIES) (https://www.agence-maths-entreprises.fr/public/pages/index.html (accessed
on 17 March 2022)). The present research was made possible thanks to the internship of R. Brard
financed by the company UmanIT in the context of his Master’s Degree in Statistical Engineering at
Nantes University.

https://www.agence-maths-entreprises.fr/public/pages/index.html

Sensors 2022, 22, 3555 18 of 21

Institutional Review Board Statement: Ethical review and approval were waived for this study, due
to data acquisition performed only on healthy individuals among the author list.

Informed Consent Statement: Patient consent was waived due to due to data acquisition performed
only on healthy individuals among the author list.

Acknowledgments: We would like to thank the Department of Mathematics of Nantes University
(LMJL) and the company UmanIT for their welcome and follow-up.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ARC Activity Recognition Chain
CART Classification And Regression Tree
FN False Negative
FP False Positive
HAR Human Activity Recognition
IMU Inertial Measurement Unit
kNN k-Nearest Neighbor
LM-QDTS Local Mean Quaternion Distance Time Series
LSD-QDTS Local Standard Deviation Quaternion Distance Time Series
MMR MetaMotionR
QDTS Quaternion Distance Time Series
QFDTS Quaternion Finite Difference Time Series
SVM Support Vector Machine
TN True Negative
TP True Positive
uQTS unit Quaternion Time Series
WARM Walking Activity Recognition Model

Appendix A. Quaternion Algebra

The information provided in this section is adapted from Piórek [53], Graf [54].

Definition A1 (Unit quaternion parametrization). Let q ∈ H be a unit quaternion. It can be
parametrized in two different ways:

q = w + xi + yj + zk, (A1)

q = cos
θ

2
+ (ux, uy, uz) sin

θ

2
, (A2)

where w, x, y and z are real numbers, i, j and k satisfy i2 = j2 = k2 = ijk = −1, and θ and
(ux, uy, uz)> are, respectively, the angle and axis of a 3D rotation as illustrated in Figure A1.

!!

!"

!#

"!

"#""

#

!

Rotation axis

Rotation angle

Figure A1. Parametrization of a three-dimensional rotation by a quaternion.

Sensors 2022, 22, 3555 19 of 21

Definition A2 (Inverse quaternion). Let q be a unit quaternions. The inverse quaternion q−1 is
defined as:

q−1 = w− xi− yj− zk = cos
θ

2
− (ux, uy, uz) sin

θ

2
.

Definition A3 (Hamilton multiplication). Let q1 and q2 be two unit quaternions. The Hamilton
product q1q2 is defined as:

q1q2 = (w1 + x1i + y1 j + z1k)(w2 + x2i + y2 j + z2k)

= w1w2 − x1x2 − y1y2 − z1z2

+ (w1x2 + x1w2 + y1z2 − z1y2)i

+ (w1y2 + x1z2 + y1w2 − z1x2)j

+ (w1z2 + x1y2 + y1x2 − z1w2)k.

Definition A4 (Geodesic distance). Let q1 and q2 be two unit quaternions. The geodesic distance
between them is given by:

d(q1, q2) = 2 arccos
(

Re
(

q−1
1 q2

))
(A3)

d(q1, q2) = 2 arccos(w1w2 + x1x2 + y1y2 + z1z2) (A4)

References
1. Whittle, M.W. Chapter 2—Normal gait. In Gait Analysis (Fourth Edition), 4th ed.; Whittle, M.W., Ed.; Butterworth-Heinemann:

Edinburgh, UK, 2007; pp. 47–100. [CrossRef]
2. Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait Analysis Using Wearable Sensors. Sensors 2012, 12, 2255–2283. [CrossRef] [PubMed]
3. Armand, S.; Bonnefoy, A.; Hoffmeyer, P.; De Coulon, G. Analyse quantifié de la marche: Mode d’emploi. Rev. Méd. Suisse 2015,

490, 1916–1920.
4. Dale, R.B. 21—Clinical Gait Assessment. In Physical Rehabilitation of the Injured Athlete (Fourth Edition), 4th ed.; Andrews, J.R.,

Harrelson, G.L., Wilk, K.E., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2012; pp. 464–479. [CrossRef]
5. Whittle, M.W. Chapter 4—Methods of gait analysis. In Gait Analysis (Fourth Edition), 4th ed.; Whittle, M.W., Ed.; Butterworth-

Heinemann: Edinburgh, UK, 2007; pp. 137–175. [CrossRef]
6. Moon, K.S.; Lee, S.Q.; Ozturk, Y.; Gaidhani, A.; Cox, J.A. Identification of Gait Motion Patterns Using Wearable Inertial Sensor

Network. Sensors 2019, 19, 5024. [CrossRef]
7. Bolam, S.M.; Batinica, B.; Yeung, T.C.; Weaver, S.; Cantamessa, A.; Vanderboor, T.C.; Yeung, S.; Munro, J.T.; Fernandez, J.W.; Besier,

T.F.; et al. Remote Patient Monitoring with Wearable Sensors Following Knee Arthroplasty. Sensors 2021, 21, 5143. [CrossRef]
[PubMed]

8. Delahaye, C.; Chaves, D.; Congnard, F.; Noury-Desvaux, B.; de Müllenheim, P.Y.; on behalf of the SOCOS Group. Measuring
Outdoor Walking Capacities Using Global Positioning System in People with Multiple Sclerosis: Clinical and Methodological
Insights from an Exploratory Study. Sensors 2021, 21, 3189. [CrossRef] [PubMed]

9. Beaufils, B.; Chazal, F.; Grelet, M.; Michel, B. Robust Stride Detector from Ankle-Mounted Inertial Sensors for Pedestrian
Navigation and Activity Recognition with Machine Learning Approaches. Sensors 2019, 19, 4491. [CrossRef]

10. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Human Activity Recognition on Smartphones Using a Multiclass
Hardware-Friendly Support Vector Machine. In Ambient Assisted Living and Home Care; Springer: Berlin/Heidelberg, Germany,
2012; pp. 216–223.

11. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity Recognition Using Cell Phone Accelerometers. SIGKDD Explor. Newsl. 2011,
12, 74–82. [CrossRef]

12. Whittle, M.W. Chapter 5—Applications of gait analysis. In Gait Analysis (Fourth Edition), 4th ed.; Whittle, M.W., Ed.; Butterworth-
Heinemann: Edinburgh, UK, 2007; pp. 177–193. [CrossRef]

13. Rueterbories, J.; Spaich, E.G.; Larsen, B.; Andersen, O.K. Methods for gait event detection and analysis in ambulatory systems.
Med. Eng. Phys. 2010, 32, 545–552. [CrossRef] [PubMed]

14. Lovecchio, N.; Zago, M.; Sforza, C. Gait Analysis in the Rehabilitation Process. In Rehabilitation After Limb Salvage Surgery;
Springer: Berlin/Heidelberg, Germany, 2021; pp. 109–118.

15. Auvinet, B.; Touzard, C.; Montestruc, F.; Delafond, A.; Goëb, V. Gait disorders in the elderly and dual task gait analysis: A new
approach for identifying motor phenotypes. J. Neuroeng. Rehabil. 2017, 14, 7. [CrossRef] [PubMed]

http://doi.org/10.1016/B978-075068883-3.50007-6
http://dx.doi.org/10.3390/s120202255
http://www.ncbi.nlm.nih.gov/pubmed/22438763
http://dx.doi.org/10.1016/B978-1-4377-2411-0.00021-6
http://dx.doi.org/10.1016/B978-075068883-3.50009-X
http://dx.doi.org/10.3390/s19225024
http://dx.doi.org/10.3390/s21155143
http://www.ncbi.nlm.nih.gov/pubmed/34372377
http://dx.doi.org/10.3390/s21093189
http://www.ncbi.nlm.nih.gov/pubmed/34064381
http://dx.doi.org/10.3390/s19204491
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1016/B978-075068883-3.50010-6
http://dx.doi.org/10.1016/j.medengphy.2010.03.007
http://www.ncbi.nlm.nih.gov/pubmed/20435502
http://dx.doi.org/10.1186/s12984-017-0218-1
http://www.ncbi.nlm.nih.gov/pubmed/28143497

Sensors 2022, 22, 3555 20 of 21

16. Schwenk, M.; Mohler, J.; Wendel, C.; D”Huyvetter, K.; Fain, M.; Taylor-Piliae, R.; Najafi, B. Wearable Sensor-Based In-Home
Assessment of Gait, Balance, and Physical Activity for Discrimination of Frailty Status: Baseline Results of the Arizona Frailty
Cohort Study. Gerontology 2015, 61, 258–267. [CrossRef]

17. Pau, M.; Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Leban, B.; Allali, G. Smoothness of Gait in Healthy and Cognitively
Impaired Individuals: A Study on Italian Elderly Using Wearable Inertial Sensor. Sensors 2020, 20, 3577. [CrossRef] [PubMed]

18. Takeda, R.; Tadano, S.; Todoh, M.; Yoshinari, S. Human Gait Analysis using Wearable Sensors of Acceleration and Angular
Velocity. In 13th International Conference on Biomedical Engineering; Lim, C.T., Goh, J.C.H., Eds.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 1069–1072.

19. Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for Human Activity
Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [CrossRef] [PubMed]

20. Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable inertial sensors for human movement analysis. Expert Rev. Med. Devices
2016, 13, 641–659. [CrossRef]

21. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. Segmenting Time Series: A Survey and Novel Approach. Data Min. Time Ser. Databases
2003, 57, 1–21. [CrossRef]

22. Sousa Lima, W.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human Activity Recognition Using Inertial Sensors in a Smartphone:
An Overview. Sensors 2019, 19, 3213. [CrossRef] [PubMed]

23. Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human Activity Recognition Using Inertial, Physiological and Environmental
Sensors: A Comprehensive Survey. IEEE Access 2020, 8, 210816–210836. [CrossRef] [PubMed]

24. Stisen, A.; Blunck, H.; Bhattacharya, S.; Prentow, T.S.; Kjærgaard, M.B.; Dey, A.; Sonne, T.; Jensen, M.M. Smart Devices Are
Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition. In Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems (SenSys ’15), Seoul, Korea, 1–4 November 2015; Association for Computing
Machinery: New York, NY, USA, 2015; pp. 127–140. [CrossRef]

25. Subasi, A.; Radhwan, M.; Kurdi, R.; Khateeb, K. IoT based mobile healthcare system for human activity recognition. In
Proceedings of the 2018 15th Learning and Technology Conference (L T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 29–34.
[CrossRef]

26. Tian, Y.; Wang, X.; Chen, W.; Liu, Z.; Li, L. Adaptive multiple classifiers fusion for inertial sensor based human activity recognition.
Clust. Comput. 2019, 22, 8141–8154. [CrossRef]

27. Liu, Y.; Nie, L.; Liu, L.; Rosenblum, D.S. From action to activity: Sensor-based activity recognition. Neurocomputing 2016,
181, 108–115. [CrossRef]

28. Nguyen, H.D.; Tran, K.P.; Zeng, X.; Koehl, L.; Tartare, G. Wearable Sensor Data Based Human Activity Recognition using Machine
Learning: A new approach. arXiv 2019, arXiv:1905.03809.

29. Lv, M.; Chen, L.; Chen, T.; Chen, G. Bi-View Semi-Supervised Learning Based Semantic Human Activity Recognition Using
Accelerometers. IEEE Trans. Mob. Comput. 2018, 17, 1991–2001. [CrossRef]

30. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,
2021.

31. Mbientlab. MetaMotionR. Available online: https://mbientlab.com/metamotionr/ (accessed on 17 March 2022).
32. BOSCH. Software: Sensor Husion Software. Available online: https://www.bosch-sensortec.com/software-tools/software/sensor-

fusion-software/ (accessed on 17 March 2022).
33. Ortiz, J.L.R. Human Activity Recognition Using Smartphones Data Set. Available online: https://archive.ics.uci.

edu/ml/datasets/human+activity+recognition+using+smartphones (accessed on 17 March 2022).
34. Garcia-Gonzalez, D.; Rivero, D.; Fernandez-Blanco, E.; Luaces, M.R. A Public Domain Dataset for Real-Life Human Activity

Recognition Using Smartphone Sensors. Sensors 2020, 20, 2200. [CrossRef] [PubMed]
35. Woodman, O.J. An Introduction to Inertial Navigation; Technical Report UCAM-CL-TR-696; University of Cambridge, Computer

Laboratory: Cambridge, UK, 2007. [CrossRef]
36. Voight, J. Quaternion Algebras; Graduate Texts in Mathematics; Springer Nature: Cham, Switzerland, 2021; Volume 288. [CrossRef]
37. Jablonski, B. Quaternion Dynamic Time Warping. IEEE Trans. Signal Process. 2012, 60, 1174–1183. [CrossRef]
38. Narváez, F.; Árbito, F.; Proaño, R. A Quaternion-Based Method to IMU-to-Body Alignment for Gait Analysis. In Digital Human

Modeling. Applications in Health, Safety, Ergonomics, and Risk Management; Duffy, V.G., Ed.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 217–231.

39. Tadano, S.; Takeda, R.; Miyagawa, H. Three Dimensional Gait Analysis Using Wearable Acceleration and Gyro Sensors Based on
Quaternion Calculations. Sensors 2013, 13, 9321–9343. [CrossRef] [PubMed]

40. Drouin, P.; Stamm, A.; Chevreuil, L.; Graillot, V.; Barbin, L.; Nicolas, P.; Gourraud, P.A.; Laplaud, D.A.; Bellanger, L. Gait
impairment monitoring in multiple sclerosis using a wearable motion sensor. Med. Case Rep. Rev. 2022, 5, 1–5.

41. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human Activity Recognition using
Smartphones. In Proceedings of the 21th International European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013.

42. Ortiz, J.L.R. Activity Recognition Experiment Using Smartphone Sensors. Available online: https://www.youtube.com/watch?
v=XOEN9W05_4A (accessed on 17 March 2022).

43. Jammalamadaka, S.R.; Sengupta, A. Topics in Circular Statistics; World Scientific: Singapore, 2001; Volume 5.

http://dx.doi.org/10.1159/000369095
http://dx.doi.org/10.3390/s20123577
http://www.ncbi.nlm.nih.gov/pubmed/32599872
http://dx.doi.org/10.3390/s18020679
http://www.ncbi.nlm.nih.gov/pubmed/29495310
http://dx.doi.org/10.1080/17434440.2016.1198694
http://dx.doi.org/10.1142/9789812565402_0001
http://dx.doi.org/10.3390/s19143213
http://www.ncbi.nlm.nih.gov/pubmed/31330919
http://dx.doi.org/10.1109/ACCESS.2020.3037715
http://www.ncbi.nlm.nih.gov/pubmed/33344100
http://dx.doi.org/10.1145/2809695.2809718
http://dx.doi.org/10.1109/LT.2018.8368507
http://dx.doi.org/10.1007/s10586-017-1648-z
http://dx.doi.org/10.1016/j.neucom.2015.08.096
http://dx.doi.org/10.1109/TMC.2018.2793913
https://mbientlab.com/metamotionr/
https://www.bosch-sensortec.com/software-tools/software/sensor-fusion-software/
https://www.bosch-sensortec.com/software-tools/software/sensor-fusion-software/
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
http://dx.doi.org/10.3390/s20082200
http://www.ncbi.nlm.nih.gov/pubmed/32295028
http://dx.doi.org/10.48456/tr-696
http://dx.doi.org/10.1007/978-3-030-56694-4
http://dx.doi.org/10.1109/TSP.2011.2177832
http://dx.doi.org/10.3390/s130709321
http://www.ncbi.nlm.nih.gov/pubmed/23877128
https://www.youtube.com/watch?v=XOEN9W05_4A
https://www.youtube.com/watch?v=XOEN9W05_4A

Sensors 2022, 22, 3555 21 of 21

44. Mardia, K. Statistics of Directional Data; Probability and Mathematical Statistics a Series of Monographs and Textbooks; Academic
Press: Cambridge, MA, USA, 1972.

45. Breiman, L.; Friedman, J.; Stone, C.; Olshen, R. Classification and Regression Trees; Taylor & Francis: Abingdon, UK, 1984.
46. Quinlan, J.R. Data Mining Tools See5 and C5.0. Available online: https://www.rulequest.com/see5-info.html (accessed on 17

March 2022).
47. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;

Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.
48. Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. kernlab-an S4 package for kernel methods in R. J. Stat. Softw. 2004, 11, 1–20.

[CrossRef]
49. Hechenbichler, K.; Schliep, K. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification; Technical Report; Institut für

Statistik: Munich, Germany, 2004.
50. Samworth, R.J. Optimal weighted nearest neighbour classifiers. Ann. Stat. 2012, 40, 2733–2763. [CrossRef]
51. Hastie, T.J.; Pregibon, D. Chapter generalized linear models. In Statistical Models in S; Wadsworth and Brooks/Cole Advanced

Books & Software: Monterey, CA, USA, 1992.
52. Gensler, A.; Sick, B. Novel criteria to measure performance of time series segmentation techniques. In Proceedings of the 16th

LWA Workshops: KDML, IR and FGWM, Aachen, Germany, 8–10 September 2014; pp. 193–204.
53. Piórek, M. Chapter 2—Processes Described by Quaternion Models. In Analysis of Chaotic Behavior in Non-Linear Dynamical Systems

Models and Algorithms for Quaternions, 1st ed.; Studies in Systems, Decision and Control, 160; Springer International Publishing:
Cham, Switzerland, 2019.

54. Graf, B. Quaternions and Dynamics. 2008. Available online: http://xxx.lanl.gov/abs/0811.2889 (accessed on 17 March 2022).

https://www.rulequest.com/see5-info.html
http://dx.doi.org/10.18637/jss.v011.i09
http://dx.doi.org/10.1214/12-AOS1049
http://xxx.lanl.gov/abs/0811.2889

	Introduction
	Proposed Walking Activity Recognition Model
	Data Acquisition
	Feature Space
	Supervised Classification Models
	A Posteriori Smoothing

	Tuning and Comparing Walking Activity Recognition Models
	Data Splitting Scheme
	Tuning Strategy
	Performance Metrics for Choosing the Best Walking Activity Recognition Model
	Classification Metrics
	Segmentation Metrics
	Computation Time

	Results
	Tuning of Model Hyper-Parameters
	Tuning of Smoothing Hyper-Parameters
	Performances of Best Tuned WARMs on the Test Set

	Discussion and Conclusions
	Quaternion Algebra
	References

